Monday, September 3, 2012

Discrete Mathematics


EQUIVALENCE LAWS
            - using the equivalence laws, we’ll show that the sentences on the left hand side and right hand side of the “↔” symbol are equivalent.

            Examples:
            1. [ ~(~P) ^ (Q v P) ] ↔ P v P
           
                        Statements                                                                  Reasons

               [ ~(~P) ^ (Q v P) ] ↔ P v P                                                 Given
               [ ~(~P) ^ (P v Q) ] ↔ P v P                                                 Commutativity
               [ P ^ (P v Q) ]        ↔ P v P                                                 Double Negation
                                    P     ↔ P v P                                                   Absorption
                                 P v P   ↔ P v P                                                  Idempotency
                                                                    Equal

            2. ~ { ~ [ P ^ (P v Q) ] } v ~ (P v P) ↔ T

                        Statements                                                                  Reasons

               ~ { ~ [ P ^ (P v Q) ] } v ~ (P v P) ↔ T                                            Given
                                     ~ (~P ) v ~ (P v P) ↔ T                                             Absorption
                                          P    v ~ (P v P) ↔ T                                              Double Negation
                                          P  v  ~P         ↔ T                                     Idempotency
                                                T              ↔ T                                     Inverse

                                                                     Equal

            3. (~Q → ~P) ^ [ ~Q v {~ (~ (P v (P ^ Q)))} ] ↔ (P ↔ Q)

                        Statements                                                                  Reasons

                (~Q → ~P) ^ [ ~Q v {~ (~ (P v (P ^ Q)))} ] ↔ (P ↔ Q)   Given
                    (P → Q) ^ [ ~Q v {~ (~ (P v (P ^ Q)))} ] ↔ (P ↔ Q)   Contrapositive Law
                            (P → Q) ^ [ ~Q v { (P v (P ^ Q) } ] ↔ (P ↔ Q)    Double Negation
                                    (P → Q) ^ [ ~Q v (P) ]                    ↔ (P ↔ Q)`        Absorption
                                    (P → Q) ^ (Q → P)             ↔ (P ↔ Q)`        Material Implication
                                                (P ↔ Q)`                 ↔ (P ↔ Q)`        Material Equivalence

                                                                      Equal




Method of Proof in Proposition Logic

Chain Reasoning
            - A chain reasoning is also called as a “direct proof”. You have to use one or more of Inference Rules and/or the Equivalence Laws in proving.

Examples:
a.)  Q v ~P
    ~R v ~Q                  (Q v ~P) ^ (~R v ~Q) → (P → ~R)
  \ P → ~R

            Statements                                                                  Reasons
1.)  ~R v ~Q                                                                Premise
2.)    R → ~Q                                                              Material Implication
3.)    Q → ~R                                                              Contrapositive Law
4.)    Q v ~P                                                                Premise
5.)  ~Q → ~P                                                              Material Implication
6.)    P → Q                                                                 Contrapositive Law
7.)    (P → Q) ^ (Q → ~R)                                          Conjunction (6,3)
8.)   P → ~R                                                                Hypothetical Syllogism

b.) ~P v Q
       S v ~R
   ~ (Q ^ S)                  (~P v Q) ^ (S v ~R) ^ ~ (Q v S) → ~ ( P ^ R)
\ ~ (P ^ R)

Statements                                                                  Reasons
1.)  ~ (Q ^ S)                                                               Premise
2.)  ~Q v ~S                                                                De Morgan’s Law
3.)   Q → ~S                                                               Material Implication
4.)   S → ~Q                                                               Contrapositive Law
5.)   S v ~R                                                                  Premise
6.)  ~R v S                                                                   Commutativity
7.)  R → S                                                                   Material Implication
8.)  (R → S) ^ (S → ~Q)                                            Conjunction (7,4)
9.)  R → ~Q                                                                Hypothetical Syllogism
10.) ~P v Q                                                                 Premise
11.) P → Q                                                                  Material Implication
12.)  ~Q → ~P                                                                        Contrapositive Law
13.)  (R → ~Q) ^ (~Q → ~P)                                     Conjunction (9,12)
14.)  R → ~ P                                                              Hypothetical Syllogism
15.)  ~R v ~P                                                              Material Implication
16.)  ~P v ~R                                                              Commutativity
17.) ~ (P ^ R)                                                              De Morgan’s Law
c.)  ~A v ~B
        A
      ~J
        J → Y                              (~A v ~B) ^ A ^ ~J ^ (J → Y) → ~ (~J → B)
  \ ~ (~J → B)

Statements                                                                  Reasons
1.)  J → Y                                                                   Premise
2.)  ~J v Y                                                                   Material Implication
3.)  ~J                                                                          Premise
4.) (~J v Y) ^ ~J                                                          Conjunction (2,3)
5.) ~J                                                                           Absorption
6.) ~A v ~B                                                                 Premise
7.) A → ~B                                                                 Material Implication
8.)  A                                                                           Premise
9.) (A → ~B) ^ A                                                       Conjunction (7,8)
10.) ~B                                                                                    Modus Ponens
11.) ~J ^ ~B                                                                Conjunction (5,10)
12.) ~ (J v B)                                                               De Morgan’s Law
13.) ~ (~J → B)                                                                       Material Implicatio

2 comments: